Brazing Powders | Standard High Temperature Brazing Powders Applications and Properties | | | | | | |--|---|----------------------------|--------------------------|--|---| | | | | | | | | Vitta Braz
1775 | Ni Bal Si 4.5
Cr 14.0 B 3.1
Fe 4.5 C 0.7 | 1870 1925
(1021) (1052) | 1950-2200
(1065-1204) | Vacuum
Inert gasses
Hydrogen | Corrosion and oxidation resistant filler metal having good strength at elevated temperatures. For joining corrosion and heat resistant alloys in highly stressed structures. Also, used for coatings. | | Vitta-Braz
1776 | Ni Bal Si 4.5
Cr 14.0 B 3.1
Fe 4.5 | 1790 1970
(977) (1077) | 1970-2200
(1077-1204) | Vacuum
Inert gasses
Hydrogen | Similar to Vitta-Braz 1775 but with less carbon content which reduces the tendency to form carbides. This filler metal is sluggish, good for wide gap applications. | | Vitta-Braz
1777 | Ni Bal Si 3.0
Cr 7.0 Fe 3.0
Si 4.1 | 1780 1830
(971) (999) | 1850-2150
(1010-1175) | Vacuum
Inert gasses
Hydrogen | Low melting point, corrosion and oxidation resistant filler metal, with good elevated temperature strength. Suited for joining nonferrous alloys, steels and thin section such as heat exchangers and honeycomb components. Used also for coatings. | | Vitta-Braz
1778 | Ni Bal
Si 4.5
B 2.9 | 1800 1900
(982) (1037) | 1850-2150
(1010-1175) | Vacuum
Inert gasses
Hydrogen | Free flowing, corrosion and oxidation resistant filler metal. This filler metal wets well so it is suited for applications where deep recesses and tight clearances are encountered. Used also for coatings. | | Vitta-Braz
1779 | Ni Bal
Si 3.5
B 1.9 | 1800 1950
(982) (1066) | 1950-2150
(1065-1175) | Vacuum
Inert gasses
Hydrogen | Corrosion and oxidation resistant filler metal with a wide melting range. This alloy has low diffusion. It's broad melting range makes it somewhat sluggish, so it lends itself to use in wide gap applications. Used also for coatings. | | Vitta-Braz
1782 | Ni Bal
Cr 19.0
Si 10.0 | 1975 2075
(1080) (1135) | 2100-2200
(1150-1204) | Vacuum
Inert gasses
Hydrogen
Dissoc. Ammonia | Boron-free corrosion and oxidation resistant filler metal. Flows extremely well and has low metal erosion. Used for joining corrosion and heat resistant alloys. | | Vitta-Braz
1006 | Ni Bal
P 11.0 | 1610 1610
(875) (875) | 1700-2000
(925-1095) | Vacuum
Inert gasses, H ₂
Dissoc. Ammonia
Reducing atm. | Low melting point, free flowing, chromium-free filler metal for brazing in poorer atmospheres. | | Vitta-Braz
1007 | Ni Bal
Cr 14.0
P 10.0 | 1630 1630
(890) (890) | 1800-2000
(980-1095) | Vacuum
Inert gasses H₂
Diss. Ammonia
Reducing atm. | Low melting point filler metal for thin-walled structures such as honeycomb components and thin walled tube assamblies. Low solubility. | | Vitta-Braz
1008 | Ni Bal Cu 4.5
Mn23.0
Si 7.0 | 1800 1850
(982) (1010) | 1850-2000
(1010-1093) | Vacuum
Inert gasses
Hydrogen
Dissoc. Ammonia | Filler metal for joining sections of stainless and low carbon steel, nickel and cobalt alloys. Has excellent flowability and non-aggressive wetting characteristics. Use for crack and low temperature repairs to existing braze joint. | | Vitta-Braz
1009 | Ni Bal
Cr 15.0
B 3.6 | 1870 1925
(1021) (1052) | 1950-2200
(1065-1204) | Vacuum
Inert gasses
Hydrogen | Silicon-free filler metal for oxidation and corrosion resistant joints for stainless steel and aircraft engine parts. This alloy is readily diffused and this is suitable for diffusion brazing applications. | | Vitta-Braz
1783 | Co Bal Si 8.0
Cr 19.0 W 4.0
Ni 17.0 B 0.8 | 2050 2100
(1121) (1149) | 2100-2250
(1150-1230) | Vacuum
Inert gasses
Hydrogen | High temperature strength cobolt based brazing filler metal. Good for brazing superalloys and cobalt-based alloys. Has low base metal penetration. | | Vitta-Braz
1142 | Ni Bal B .1
Cr 7.1
Si 9.3 | 1975 2075
(1079) (1135) | 2125-2200
(1163-1204) | Vacuum
Inert gasses
Hydrogen | Modified Vitta-Braz 1782 for wide gap applications. Has better flow than Vitta-Braz 1143. Good for thin-walled assemblies and honeycomb components where minimal erosion is desired. | | Vitta-Braz
1143 | Ni Bal
Cr 15.2
Si 8.1 | 1975 2075
(1079) (1135) | 2150-2200
(1177-1204) | Vacuum
Inert gasses
Hydrogen | Corrosion and oxidation resistant filler metal. Modified Vitta-Braz 1782. Suitable for thin-walled structures. | | Vitta-Braz
1996 | Ni Bal Si 4.5
Cr 13.0 B 2.7
Fe 4.5 | 1760 2060
(960) (1127) | 2075-2200
(1135-1204) | Vacuum
Inert gasses
Hydrogen | Similar to Vitta-Braz 1776. Addition of cobalt helps base metal wetting and braze alloy solid solutioning. Suitable for tight tolerances and thin sections. | | Vitta-Braz
1070 | Ni Bal Si 3.5
Cr 11.0 B 2.3
Fe 3.5 | 1780 2120
(971) (1160) | 2100-2200
(1149-1204) | Vacuum
Inert gasses
Hydrogen | Corrosion and oxidation resistant filler metal for wide gap joints where a heavier filler is desired. | | Vitta-Braz
1030 | Ni Bal Fe 3.5
W 16.0 Si 3.5
Cr 12.0 B 2.5 | 1780 2020
(971) (1104) | 2100-2200
(1149-1204) | Vacuum
Inert gasses
Hydrogen | Corrosion and oxidation resistant filler metal having good strength at elevated temperatures. Good for cobalt, molybdenum, and tungsten base metals. | | Vitta-Braz
1050 | Ni Bal P 10.0
Cr 25.0 | 1620 1740
(882) (949) | 1800-2000
(982-1093) | Vacuum, Inert
gasses, Hydrogen
Dissoc. Ammonia | Similar to Vitta-Braz 1007. This filler metal has higher corrosion resistance and strength. |